Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Applied Physics Letters ; 121(6):1-7, 2022.
Article in English | Academic Search Complete | ID: covidwho-1991756

ABSTRACT

The analysis and detection of nucleic acid and specific antigens and antibodies are the most basic technologies for virus monitoring. However, the potential window for applying these technologies exists within a late specific period in the early monitoring and control of unknown viruses, especially human and animal pathogenic viruses transmitted via aerosols, e.g., SARS-CoV-2 and its variants. This is because early, real-time, and convenient monitoring of unknown viruses in the air or exhaled gas cannot be directly achieved through existing technologies. Herein, we report a weak light spectral imaging technology based on Tesla discharge (termed T-DAI) that can quickly monitor for viruses in real time in simulated aerosols with 71% sensitivity and 76% specificity for aerosol virus concentrations exceeding approximately 2800 vp/μl. This technology realizes the rapid detection of low concentrations of viruses in aerosols and could provide an important means for predicting, screening, and monitoring unknown or pandemic pathogenic viruses in the air or exhaled breath of humans and animals. [ FROM AUTHOR] Copyright of Applied Physics Letters is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL